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Abstract

In the realm of open and composable gaming, we envision platforms
where users actively expand, create, engage, and immerse themselves in
a rich world of entertainment. One promising avenue for achieving this
vision is through fully on-chain (FOC) games, where both game state
and logic reside on the blockchain, maximizing composability. However,
we must grapple with inherent limitations and trade-offs, particularly
in terms of costs and scalability. This paper proposes BOLT, a frame-
work that leverages the Solana Virtual Machine (SVM) to scale FOC
games without state fragmentation or compromised trust assumptions.
The framework introduces a systematic approach for discovering, utiliz-
ing, and publishing modular pieces of logic as components deeply rooted
in the Entity-Component-System (ECS) pattern. To enhance scalability
and resource optimization, we introduce the concept of Ephemeral Rollups
(ERs) that overcome the tradeoffs of L2s horizontal scaling. These ded-
icated runtimes can be customized to provide higher operational speed,
configurable ticking mechanisms, provable sessions and gasless transac-
tions without composability-scalability tradeoffs.

1 Introduction

Fully on-chain (FOC) games intertwine digital experiences with decentralized
immutable ledgers. Any participant of a FOC game can integrate additional
content, logic or modifications without explicit consent from the original cre-
ator (" permissionless modding”) or entertain with the creation of ” Autonomous
Worlds”, unstoppable digital Worlds [19]. Thanks to smart contracts - which
enforce the substrate of these virtual realities - it is impossible to unplug them
like traditional game servers. Once deployed, a FOC game will run forever. This
degree of creativity and persistency introduces a whole new level of significance
to games, which become avenues to play, socialize, work, and conduct commerce
in an even more pervasive and profound fashion.

In accordance with the definitions given in [19], [2], [14], our perspective holds
that for a game to be classified as fully-on-chain, it should inherently possess
these crucial attributes:



e Blockchain as single source of truth: both game state and logic must reside
on the blockchain. It serves as a transparent data store, guaranteeing the
permanence of all meaningful data and allowing trustless execution of
logic. The game is client-agnostic.

e Permissionless Composability: the game can accommodate new exten-
sions, logic and/or components without the need for explicit permission
from the original creator. Trustless computation enabled by smart con-
tracts ensures unbounded access for any enhancement ("everything is a
public APT”). Even though not every plug-in, extension or third-party
client will necessarily be used, everyone has a chance to contribute and
add their modifications to it.

e Persistency: The game should demonstrate resilience, with no single point
of failure. Even though servers or centralized components may serve to
augment performances or playability, the game/world should hold the po-
tential to progress without their presence, thereby ensuring the continuous
existence of said digital reality.

Our conviction is that FOC games will become the key drivers for the inception
of innovative platforms and self-reliant ecosystems. These digital worlds will
evolve according to the will of consumers and online communities aligned in
this creative endeavour. This concept holds the potential to transcend gaming
and blur the line between the virtual and the physical world, seamlessly blending
the two.

1.1 Game Logic, State, and Transactions

In a fully on-chain game, the game logic resides within smart contracts deployed
on the blockchain, ensuring transparency and immutability. It comprises the
rules, player interactions, and other essential behaviours that define the gaming
experience.

The game state, on the other hand, refers to the real-time status and attributes
of the game elements, which are stored on-chain, providing a consistent and
synchronized environment for all players. It reflects the game’s current situa-
tion, from player positions to assets and scores.

Transactions in this context denote the interactions and exchanges occurring
within the game. Players’ actions, asset transfers, and other in-game activities
are state transitions recorded on-chain, ensuring their integrity and permanent
record. The blockchain’s decentralization makes these interaction transparent,
verifiable, and immutable.



1.2 Outline

In the upcoming sections, 2 and 4, we introduce BOLT, a performant and scal-
able SVM-based framework for FOC games and Autonomous Worlds. We dive
into some of key features, notably its scalability and the efficient re-use of re-
sources and on-chain components. For an overview of the emerging gaming
frameworks and their limitations refer to Appendix A. For an overview of the
commonly adopted scalability solutions and their limitations and tradeoffs refer
to Appendix B.

2 Framework Architecture

Developing multiplayer games is a complex endeavour in conventional settings.
FOC games further intensify these challenges as we must adhere to registering
every interaction on-chain, a limiting factor both in terms of scalability and
costs. These limitations primarily arise from its decentralized nature and the
consensus mechanisms employed.

Considering a straightforward scenario, a game with 1000 players, with each
player’s position updating every 100 ms, results in 10,000 transactions per sec-
ond. Scaling this to 100,000 players, the rate is leaping to 1,000,000 transactions
per second — a volume no blockchain, at the time of writing, can support. Even
for a high-speed blockchain like Solana, which might manage such traffic in the
future, the demands quickly become insurmountable when considering multiple
games and higher numbers of players. From a cost perspective, Solana’s local-
ized fee market does alleviate some concerns by preventing a single game from
affecting fee costs for other games ("noisy neighbor” problem). However, even
if the individual transaction fees are low, the cumulative cost of such a vast
number of transactions can become untenable for a single fee payer (i.e., the
game developer).

2.1 SVM runtime

The Scalability in Solana is intrinsically linked to its unique method of state
storage and management, distinguishing it from other virtual machines like the
EVM. In Solana, everything is an account. Accounts can hold any data, as well
as native SOL tokens.

Broadly, accounts fall into two categories:

e Executable (program accounts): These are akin to smart contracts, hous-
ing code and often referred to as “programs”

e Non-executable (data accounts): These can store tokens or data but lack
the capability to execute code.

Solana’s account model inherently grants programs the privilege to create and
oversee specific accounts. This allows developers to create custom rules and
logic for their governance. These special accounts are called Program Derived



Addresses (PDAs) [27]. This mechanism empowers programs to endorse various
on-chain actions on a PDA’s behalf, ensuring the Solana network recognizes and
validates these actions without needing a private key [28].

Another core feature of the Solana Virtual Machine is that it parallelizes trans-
action processing. It identifies which parts of a transaction are non-overlapping
and can be processed in parallel, maximizing hardware utilization. Unlike other
blockchains that use a merkle tree to keep track of the global state and process
transactions sequentially, Solana’s Sealevel executes them concurrently, signifi-
cantly boosting the network’s throughput and scalability.

2.2 Ephemeral Rollups

The core intuition is that by harnessing the SVM’s account structure and its
capacity for parallelization, we can split the app/game state into clusters. Users
can lock one or multiple accounts to temporarily transfer the state to an auxil-
iary layer, which we define as the ”ephemeral rollup”, a configurable dedicated
runtime. This process temporarily entrusts the sequencer to modify the ac-
counts in the ephemeral rollup, where the state can be forcefully reverted and
unlocked on the L1 if constraints are not satisfied (see section 2.3). Despite this
delegation, operations and transactions can still use the delegate accounts as
readable on the base layer. Non-delegated accounts remain unaffected and mod-
ifiable. The ephemeral rollup operates as a specialized SVM runtime to facilitate
transaction processing at an elevated throughput. Additionally, this specialized
runtime can be customized to include configurations like gasless transactions,
quicker block-time, and the inclusion of a ticking mechanism (i.e., an integrated
transaction scheduling system like clockwork [3] operated without fees). The
entire process is transparent to the end user - a specialized RPC provider can
route the transactions to the base layer and the ephemeral rollup(s) in parallel
during the game session.

Figure 1 provides an overview of the system. The game program defines the
game’s logic and mechanisms. Its state consists of various accounts, such as
PDAs representing the positions of P1, P2, and a Chest designated for distribut-
ing rewards. The game program leverages BOLT logic and tools, for instance,
an off-the-shelf movement or an energy system.

The steps involved in provisioning and utilizing the ER are:

1. The game program communicates with the BOLT ER program, initiating
a transaction that requests an ephemeral rollup provision. This request
specifies the ER’s configuration details, such as its lifetime, base layer
update frequency, targeted transactions per second, and block time.

2. Monitoring the BOLT ER program, the provisioner detects the provision-
ing request and promptly launches the corresponding runtime based on
the configuration.



3. The game program delegates accounts to the BOLT ER, granting it the
authority for state updating and settlement. From now on, the delegated
accounts can only be updated on the ER. This third step can even occur
in parallel with, or prior to, the second step.

4. Clients wanting to execute transactions or retrieve data via RPC send their
transactions to an RPC router. Depending on the accounts involved in
the transactions, this router then forwards the transactions to the appro-
priate chain, either on the base layer or one of the ERs. A comprehensive
discussion of the routing mechanism is available in 2.2.2.

5. Periodically, or upon ER termination, the sequencer updates the state on
the base layer.

6. Once the ER concludes (or if the game program forces its closure), account
control reverts to the owner program and the provisioner terminates the
ER.

SVM SVM Ephemeral Rollup (1/n)

BouT LoGic \ @ " sourLosic cLovgy .,
Client i

SESSION KEYS SOAR GAME DEX PROGRAM se: somn
« Authorize « Leaderboard « CreateGame
- Ciose - Achievemens < Move

« OpenChest [~

‘ RORL'I"::ER VVVVVV
= - :
Game State H H

BOLTER

B o soeguie g | Frovbon | Peues

Sequencer

Figure 1: The figure showcases the architecture of the BOLT scalability solution, focusing on how
a game program manages its state across multiple accounts. The example presents two PDAs,
each responsible for recording the position of Player 1 and Player 2 respectively. These PDAs are
then delegated to the BOLT ER (Ephemeral Rollup) program. In the background, the Provisioner
constantly observes the BOLT ER program, watching for provisioning requests. Upon detection,
it dynamically launches an SVM runtime, adapting to specific configuration parameters such as
block time and ticking, among others. Within the Ephemeral Rollup (ER) framework, transactions
using these delegated accounts are accelerated. The sequencer is the component responsible for
updating and finalizing the states of these accounts on the L1.

To illustrate with a practical example, consider Figure 1. A game program might
reward players with an NFT reward upon reaching a specified area on a map.
PDAs, tracking players’ positions, can be frequently updated within the ER,
facilitating a low-latency multiplayer session among players in the ER. When a
player reaches the designated map location that triggers a reward, according to
the game logic, the client can submit the transaction in the usual manner. If
the sequencer doesn’t update rapidly enough, one might first submit an optional
state settlement request. Behind the scenes, the Remote Procedure Call (RPC)



router relays this transaction to the base layer. Operating on the base layer,
the game program can accurately process this transaction and dispense the
reward. This is because the position account, which is read-only, reflects the
updated location, and modifications can be made to the Chest PDA which
wasn’t delegated to the BOLT ER program.

2.2.1 Avoiding Fragmentation and Benefits

The benefit of ER is that programs and assets reside directly on the base layer.
Transactions can be accelerated through ERs, which are fully compatible with
the Solana Virtual Machine (SVM) down to the bytecode level. Any improve-
ments or advancements at the base layer are immediately available, without the
need to modify or re-deploy programs.

Ephemeral Rollups has the following benefits:

e Developers deploy programs to the base layer (e.g., Solana), rather than
on a separate chain as it would normally happen with rollups. Programs
live on the base layer and can interact with any existing protocol and
assets. ERs don’t fragment the existing ecosystem and allow the speed-up
of targeted operations without creating an isolated environment.

e Users, developers and programs using ERs can take advantage of Solana’s
infrastructure. This includes programming languages, code libraries, test-
ing tools, client software, deployment infrastructure etc.

e The specialized runtime can accommodate game-specific customizations
(e.g., ticking or passive events, typical in games, as opposed to the event-
driven runtime of blockchains) without the need to pay gas for fees on
those specific accounts.

e This approach enables a highly scalable system capable of launching rollups
on-demand, auto-scaling horizontally to accommodate users performing
millions of transactions without the tradeoffs of traditional L2s.

BOLT allows FOC games to scale without compromising composability on the
base layer.

2.2.2 Reading and Modifying the state

As highlighted in the preceding sections, the state is maintained in accounts.
These accounts can concurrently exist on the base layer and within an ephemeral
rollup (ER). While accounts are universally readable from both layers, they can
be modified either from the base layer or the ER. It’s important to note that
if a user or client seeks to access data from an account, the most recent or
updated data might reside in the ER, if it hasn’t been settled on the base layer
yet. Consider a scenario where a game client employs a WebSockets connection
to display other players on a map, and the position PDAs are delegated to the
ER. In such a case, a WebSockets connection to the ER would allow observation
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Figure 2: The RPC router module routes both HTTPS and WebSocket requests either to the base
layer RPC or to the Ephemeral Rollup RPC, based on the accounts being accessed or utilized.

and streaming of transactions with a latency and block time comparable to a
traditional multiplayer game server, typically between 10 to 100 milliseconds.

The added complexity of determining where to submit transactions and where
to retrieve data from can be abstracted using an RPC router, as depicted in 2.
Clients can subscribe and send transactions to the RPC router as they would to
a traditional RPC. The RPC Router then directs transactions and connections
either to the base layer or to the ER RPC, depending on the accounts involved.

Considering the following scenarios:

For Reading the state:

o If the request accesses accounts delegated to an ER, the RPC router relays
the requests to the ER RPC.

e Otherwise, the base layer RPC processes the request.
For Sending transactions:

o If the transaction contains readable accounts from the base/ER layer and
all writable accounts are delegated to the ER, the transaction is relayed
to the ER RPC.

e If the transaction includes readable accounts from the base/ER layer and
no writable accounts are delegated, the transaction is relayed to the base
layer RPC.

e A challenging scenario arises when a transaction aims to modify accounts
present in both the ER and the base layer. There are two options to
resolve this situation. The first is to force an intermediate settlement on
the base layer, undelegate the accounts and send the transaction through
the base layer RPC. The second is to discard the transaction as invalid.
The preferred solution depends on the use case.



Additionally, the RPC Router provides the correct blockhash for transactions,
a fundamental component in how Solana ensures security and prevents double
spending [25].

2.2.3 Account/programs lazy loading and Data Availability

An interesting feature to note about ephemeral rollups is the ability to perform
lazy loading of the accounts/programs used in transactions. If a transaction
uses readable accounts for state or programs (logic) that are part of the main
layer, the ER can clone the account state as needed, without having to initialize
a complete clone of the main chain. Transactions are available for a specific
time window. They can also be indefinitely stored in a compressed account on
Solana [26] or within an external DA layer such as Celestia [18]. Transactions
persist after the ephemeral rollup has been closed, making it easier to verify the
correctness of the executed computation.

2.3 Security and Computation Trustworthiness

The two critical security aspects of the ER are as follows:

e Preventing an indefinite lock of delegated accounts or compromised state.

e Consensus and verification of ER’s computation.

The mechanism to avoid the first point hinges on the nature of Ephemeral
Rollups; as the name suggests, they are ephemeral. Anyone can request the
undelegation of accounts when the life of the ER ends by interacting with the
program in the base layer. Furthermore, the program that carried out the
delegation can revoke it or request settlement at any time, thereby forcing the
closure of the ER.

The second point is a common challenge in all rollup architectures, typically
addressed through optimistic rollups or ZK rollups. For a detailed description
of zk-Rollups, see [33]; for Optimistic Rollups, see [22]; and for a comparison,
see [11]. [24] describes ZK channels, a conceptually similar idea for the gam-
ing use-case. As mentioned, transactions history remain available natively in a
compressed account on Solana or an external DA layer like Celestia [18]). The
proposed approach for BOLT combines these two techniques: it initially per-
forms an optimistic computation for speed, and then produces a ZK proof (e.g.,
through RISCO [31]) for verification. This proof can be efficiently verified on
the base layer in a single transaction. Anyone can become a Provisioner for the
Ephemeral Rollups sessions by staking a predetermined amount of tokens to the
ER program, essentially creating a DePIN infrastructure [21]. Furthermore, ER
participants themselves can act as SVM diet clients [15], thereby enhancing the
trustworthiness of the network.



3 SVM as a Multiplayer Game Server

The architecture presented addresses the challenge of processing millions of
transactions for an arbitrary number of games. By horizontally scaling the
traffic across multiple SVM ERs, it ensures high throughput and low latency,
without compromising composability on the base layer and making it suitable
for multiplayer gaming scenarios.

Estimating the theoretical throughput of this system is complex due to its depen-
dency on the number of ERs and the sharding strategy. However, a comparative
analysis with a multiplayer game server like Nakama [17] can provide a perfor-
mance benchmark. Nakama is renowned for its low-latency performance, often
achieving latency close to 50ms, and high-throughput capabilities, supporting
thousands of concurrent players in real-time multiplayer games (see [16] for a
more detailed Nakama benchmark).

As of the time of writing, Solana Sealevel can achieve a throughput ranging from
50,000 to 65,000 TPS [4]. The advent of newer runtimes, such as Firedancer
[10], is anticipated to further boost the throughput to more than 100k TPS. This
level of throughput is already substantial, yet the ER can further enhance the
throughput with an arbitrarily large number of dedicated runtimes. In terms of
latency, Solana produces blocks approximately every 400 milliseconds. However,
the customizable ER runtime can decrease this time to between 10 and 50ms.
It’s worth noting that the reported performance figures for Solana are based on
a network comprising around 2,000 nodes.

Solana’s technology, particularly the SVM, could foster a new era of decen-
tralized gaming. The Solana Virtual Machine, with its efficient transaction
processing and support for decentralized applications, emerges as a promising
infrastructure for hosting multiplayer game servers.

4 ECS, Mapping and Registry

The framework includes a standardized way to model the game logic, using the
ECS (Entity, Components and Systems), which is commonly used in the gaming
industry and also adopted in most on-chain engines, such as [14] and [20].
This pattern decouples logic from state, enabling optimizations in terms of
performance and scalability. Additionally, its modular nature facilitates code
reusability and extensibility, which are two essential properties for fully on-chain
games and autonomous worlds.

The Solana Virtual Machine makes use of a paradigm similar to an ECS. The
state (the accounts) and the logic (the programs) are natively separated. This
separation is the key mechanism for Solana’s parallelism and the scalability
solution presented in Section 2.

When drawing a comparison with Solana’s architecture, we can see how an ECS
can be readily implemented:

e Entities: An entity is a general-purpose object typically represented by a
unique identifier. It doesn’t directly contain any data or behaviour but



serves as an identifier for a collection of components. Entities can be
registered in a world instance account on Solana and could themselves be
accounts.

e Components: Raw data structure that represents some aspect or attribute
of an entity. For instance, a PositionComponent might just contain x, y,
and z coordinates. This is concept is essentially equivalent to accounts on
Solana.

e Systems: Performs the game logic or behaviour by acting upon entities
that have specific components. Similar to programs on Solana, which only
specify the logic and the accounts they operate on.

Solana’s Program Derived Addresses (PDAs) facilitate the efficient storage and
retrieval of components, mimicking a hash table-like structure. [12] provides an
example implementation of an ECS on Solana.

4.1 Mapping and State listening

The standardized pattern allows for easy integration of game components with
a rendering engine to display the game interface. The presented framework can
be viewed as an open and permissionless alternative to a backend intended as
a multiplayer game server. For visualization and rendering, existing engines
such as Unity [30], Unreal Engine [32], Phaser [23], and others can be used.
The standardized structure of the components allows for automatic mapping of
components and entity properties (abstracting serialization and deserialization,
akin to the mechanism of the Anchor framework on Solana [5]). State updates
can be easily performed and intercepted, providing a mechanism similar to the
Observer pattern [9] to listen to state changes and update the rendering.

4.2 Public Components Registry

A registry is a complementary infrastructure that works effectively in conjunc-
tion with an architecture that leverages the ECS pattern or the general paradigm
of Solana. A public registry allows for publishing, discovering, and reusing pieces
of logic (such as systems and data structures) shared across apps and games.
Every program deployed on Solana can be perceived as a system that delineates
the logic and receives accounts as input for computation. Specifically for apps
and games, we envision a registry housing typical developmental logic - a colli-
sion system, an energy system, a movement system etc. — commonly found in
traditional engines. Thus, the registry serves as a single hub where developers
can discover, publish, and utilize systems and components. This facilitates the
swift assembly of games by developers without the need to rewrite the entire
underlying logic from scratch.
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4.3 Game Loops, Ticking and FRP

Typically, game engines integrate a Game Loop, which allows for the continuous
updating of the state (sometimes referred as ticking) in a loop that performs
the following steps:

e Process input.
e Update the game state (e.g., physics, Al, object positions).

A client-side engine would also include the rendering step. As mentioned in sec-
tion 2.2, continuous state updates can be achieved using a transaction scheduling
mechanism like Clockwork. While it is a viable solution, it presents some issues
such as the cost of fees and the uncertainty of the exact block/timestamp of
the transaction execution. These issues are much less prominent in Ephemeral
Rollup, where the cost of state update transactions can be lifted, and the block
time can be configured to be in the range of 10 to 50ms.

While having game loops constitutes the most adopted solution for most game
engines, there are also less explored alternatives. There are Haskell engines
that instead leverage the functional programming paradigm, such as Yampa [1]
and implementations of the functional and asynchronous ECS pattern, such as
Apecs [6]. The underlying idea is that values are derived through a function
instead of evolving the state based on update loops (which can depend on input,
time, or other sources). A simple example is an energy system that depends
on time, e.g., a function that increases energy by one point every 30 seconds.
This paradigm aligns perfectly with the realm of blockchain, where transactions
are inherently asynchronous and where the game instance potentially lives for-
ever on the blockchain, evolving over time. The idea is conceptually identical
to Functional Reactive Programming (FRP) and Functional Reactive Anima-
tion [13], which is a programming paradigm that deals with asynchronous data
streams and changes in data over time.

Although it is theoretically possible to write an engine that fully utilizes this
paradigm, avoiding an update loop, in practice, a combination of the two tech-
niques allows for greater configurability and the ability to use the suitable
paradigm considering the game mechanics being developed. For example, it
is possible to update the position of one non-performing character (NPC) with
a loop and derive the position of n other NPCs. The framework will evolve
supporting both paradigms.

5 Conclusion

In this article, we have presented the design and architecture of BOLT, a perfor-
mant and scalable framework for fully on-chain games and Autonomous Worlds.
The framework adopts an Entity Component System (ECS) architecture to fa-
cilitate the creation and reuse of on-chain components and logic. By leveraging
the unique features of the Solana Virtual Machine — its account structure, the
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delegation of account modifications, and parallelization capabilities - the frame-
work proposes Ephemeral Rollups as a promising path to scale FOCG. This
design enables fast, specialized runtimes that auto-scale horizontally to meet
demand without creating isolated environments. As a result, the system main-
tains composability with existing protocols, tooling and runtime advancements
at the base layer without any state fragmentation. It’s worth noting that while
the solution is designed for fully on-chain games, this mechanism can be broadly
applied to various other use cases.
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A Emerging gaming frameworks

Recently, several frameworks have emerged in an attempt to simplify the devel-
opment of this new domain of games. Each of these ”on-chain game engines”
possesses distinct features and iterates along different verticals to facilitate the
creation and management of FOC games, with various degrees of trade-offs.
This section delineates the technical nuances and provides a comparative anal-
ysis of these frameworks.

A.1 EVM frameworks

One of the earliest on-chain gaming frameworks is MUD [20]. Lattice, the com-
pany behind the MUD framework, was the first to introduce the ECS (Entity-
Component-System) paradigm on-chain. While currently on Optimism, MUD
aims to resolve the EVM limitation by introducing an opinionated database
that indexes the game state from the chain and can be easily queried like any
normal relational DB. This enables quicker access to the table of components
that constitute an Autonomous World instance compared to retrieving the state
directly from the chain. The focus of MUD is on modularity, featuring a system
of libraries and plugin-ins. The biggest limitation is the ability to scale or add
customization at the runtime level. Assuming the projected path to scale games
built on MUD is with L3, this would fragment the state of the game deployed
across new rollups. A similar OP-stack-derived engine is Keystone, developed
by Curio, a rollup framework improving the performance of the EVM. Curio
is focusing on the more responsive types of games, thanks to the introduction
of "ticks”, atomic units of time, that ultimately makes the game feel and look
more responsive. Similarly to MUD, every game built on Keystone will have to
deploy their own independent rollup, with the same fragmentation problem of
an isolated state.

LootChain [7] is yet another low block-time, customizable layer 2 deployed with
Caldera. It is developed by the community of Loot and uses ADGL as gas.
Aside from a lower block time it doesn’t solve the above-mentioned problem of
fragmentation across games, nor gas congestion due to the ”noisy neighbour”
problem.

A.2 Non-EVM frameworks

Dojo [14] is an open-source framework developed by Cartridge and other contrib-
utors on Starknet. The main advantage of Dojo is relying on Starknet prover to
create provable-game sessions leveraging zero-knowledge computation and being
able to post state diffs rather than entire state updates. The focus on Dojo is on
shifting intense computation (i.e., physics) off-chain and proving the integrity of
said computation on-chain. Dojo, similarly to other engines, proposes an ECS
for the components, tools for scaffolding, indexing and the setup of local nodes
to facilitate development. With the release of Madara, a fast L3, Dojo is making
explicit that the path to scaling presents the same tradeoffs as other solutions.
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Paima engine [8] is a stack developed by Paima Studio supporting FOC on
Cardano, Polkadot, Algorand and EVM chains. It places emphasis on cross-
chain development and at the core it makes use of a state machine that replays
the smart contract logic and pushes the update on a sovereign rollup. Paima
is explicitly trading off composability in order to achieve higher scalability and
parallelization in its state machine. Every game is deployed on its own sovereign
rollups. Even a trivial global leaderboard across games built on Paima becomes
complicated, if even possible, with this approach.

A.3 Other frameworks

World engine [29], developed by Argus Labs, is an attempt to solve perfor-
mance issues and introduce a ticking mechanic while also keeping composability
in mind. Argus acknowledges that atomic composability is not necessarily a pre-
requisite for games (i.e., no flash-loans like dynamics) and proposes an EVM L2
with sharded execution environments and customizable runtimes. The insight
is that gaming runtimes are inherently different from blockchains as they can
have passive events (i.e., day and night cycles, energy regeneration...). Passive
events are not generated from user input. This architecture is referred to as
”loop-driven” runtime as opposed to ”event-driven” runtime. While on paper,
this looks like a promising approach, Argus is effectively bootstrapping a new
blockchain from scratch. None of the existing infrastructure, tooling or smart
contracts works out-of-the-box on non-EVM shards and the Argus ecosystem is
not directly befitting from the broader advancements and activity of the base
layer. We believe Autonomous Worlds promise to bring a new level of signifi-
cance to play, which makes them more likely to succeed in an ecosystem where
global payments are settled, userbase and liquidity are abundant, protocols are
innovating on new primitives etc. Additionally, atomic composablity can be
leveraged to improve UX or to unleash novel use cases in non-trivial manners
(i.e., in the context of eSports, an on-chain Bot could borrow a powerful item
from an NFT marketplace right before a critical hit to complete a high-stakes
fight and repay the loan with the prize won or a user could onramp with FIAT,
swap to SOL, create an account abstraction wallet and commit to a prize pool
in 1 atomic transaction).

A.4 Considerations

In their own unique ways, every framework is trying to increase the performance
in terms of blocktime and throughput but introducing composability and net-
work effects tradeoffs. Isolated app chains and horizontal scaling in its current
form feel extremely short-sighted as it fragments the state and reduce the syn-
ergies with other protocols at the base layer. If it’s true that Autonomous
Worlds introduce a new level of significance in games and enable virtual experi-
ences that act as avenues for commerce, play and work, we believe blockchains
settling large volume of real-world economic activity, RWO, consumer-facing

16



applications, decentralized Physical infrastructure, and synchronizing state at
low latency globally are a better fit for these kind of new experiences.

B Scalability Approaches

A prevalent approach to address scalability challenges involves layers 2, pro-
tocols built on top of the base blockchain (Layer 1) to increase transaction
speed and reduce costs, and partitioning traffic into isolated segments, known
as sharding. Both methods share similarities and scales by segregating the
state and computation into independent layers/shards. A similar technique is
often employed in multiplayer games, where the multiple server instances man-
age traffic, e.g., sharding by geographic zones, whether virtual or real-world
regions. Layer and Shards must be interoperable; for instance, a player might
transition from one map area to another, effectively moving between shards.
This method of scalability is incorporated in most game engine described in
section ?7?(directly or indirectly). This solution, taken to the extreme, can lead
to app-specific L3s, where state and traffic are sharded for each app/game, an
emerging scaling strategy for games built on the dojo and mud engines.

This technique inherently leads to state fragmentation, complicating the com-
posability of games, applications, or other protocols on the blockchain. While
bridges can solve this issue, they’ve historically been unreliable, added user
interface complexity, and introduced potential sources of bugs. Additionally,
it’s impossible to execute atomic transactions, which are transactions that are
fully executed or not at all. Such atomicity can be essential for specific game
mechanics, particularly if a game has economic implications or interfaces with
atomic-requiring protocols.

Both solutions can use an improved runtime that can be faster and more per-
formant. In this category, we can conceptually identify two typologies:

e The first encompasses various runtime implementations that, while di-
verse, remain compliant with the parent virtual machine’s interface. Speed
and performance can be superior either due to a more efficient implemen-
tation (for example, an optimized implementation written in Rust vs.
Python for the EVM). Alternatively, it might result from different under-
lying assumptions about security and decentralization. Examples include
employing a novel or more centralized consensus mechanism or using an
EVM runtime capable of creating a zero-knowledge proof of the execution,
decoupling computation and consensus/verification.

e In contrast, the second category adopts a distinct state machine, free from
the limitations of the base layer’s virtual machine. This offers an avenue
to leverage optimized runtimes—like Paima [8] and the World Engine [29]
architecture (with Go and Nakama as a multiplayer game server). The
state machine define it’s own state transition mechanism, and eventually
also the consensus and settlement on the base layer.
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Both categories fall under the umbrella of rollups, further classified into distinct
categories like ZK, optimistic, smart contract rollup, and sovereign, contingent
on the mechanisms of execution, settlement, consensus, and data availability
they employ. For a more detailed description, refer to section ?77.

B.1 Scalability vs Composability

The performance and throughput of the execution layer are constrained by the
features of the virtual/state machine and its runtime (the implementation). One
clear advantage of using a runtime compliant with the specifications of the vir-
tual machine is maintaining compatibility with the base layer. For instance, with
the EVM, protocols and tech stacks are typically reusable or deployable with-
out modifications across any EVM-compatible blockchain and L2/L3 solutions.
Such compatibility fosters the growth and rapid expansion of an ecosystem. It
also facilitates the integration of technological and application innovations from
diverse ecosystems, leading to a general improvement in virtual machines. Mo-
rover, users and products can easily be acquired and shared between compatible
chains. However, the downside lies in architectural limitations, mainly arising
from the blockchain’s emphasis on security, decentralization, immutability, and
consensus.

Conversely, using a custom or pre-existing state machine not tailored for blockchain
allows for performance, latency, and throughput optimization, but complicates
composability and typically reduces trust and security assumptions. Addition-
ally, protocols and products that rely on this state machine cannot be transferred
between ecosystems, leading to increased fragmentation.

Our framework achieves both benefits, minimizing the scalability /composability
trade-off. By leveraging the unique features of the Solana Virtual Machine, de-
scribed in subsequent sections, it can accommodate any runtime for the SVM
and scale it horizontally without compromising the ability to interact with pro-
tocols/components on the base layer, even atomically.
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